An affirmative answer to a question concerning dense metrizable subspaces of generalized ordered spaces

Masami HOSOBUCHI

Abstract

In this paper, we give an answer to the following question that was posed by the author in [H3]: Let (*X*, \mathcal{I}) be a linearly ordered space with a dense metrizable subspace. Then, does the associated Sorgenfrey space (*X*, \mathcal{S}) have a dense metrizable subspace? Furthermore, we show some related consequences concerning σ -closed discrete dense subsets, and Property III that was defined in [BL].

Key words : Linearly ordered space, associated Sorgenfrey space, generalized ordered (GO) space, σ -closed discrete dense subset, dense metrizable subspace, Properties I, II, and III, G_{δ} -diagonal.

1. Introduction

Let (X, <) be a linearly ordered set. We will consider two topologies on (X, <) at the same time. One of them is a linearly ordered (topological) space (LOTS) and the other one is a Sorgenfrey space. Such a Sorgenfrey space is called the *associated* Sorgenfrey space in the connection with a given LOTS. A linearly ordered space $(X, <, \mathcal{T})$ has the order topology \mathcal{T} defined by <, that is, a basic open neighborhood of *z* in the LOTS is of the form $]x, y[= \{u \mid X : x < u < y\}$, where x < z < y are points of *X*. The order topology is often called the interval topology. That is the reason the letter \mathcal{T} is used. A basic open neighborhood of *x* in a Sorgenfrey space $(X, <, \mathcal{S})$ is of the form $[x, y] = \{z \mid X : x \le z < y\}$, where x < y. We usually abbreviate $(X, <, \mathcal{T})$ as (X, \mathcal{T}) , and $(X, <, \mathcal{S})$ as (X, \mathcal{S}) . We also write (X, <) as *X*.

2. Linearly ordered spaces and Sorgenfrey spaces

H. R. Bennett, D. J. Lutzer and S. D. Purisch [BLP] defined the following properties to study dense subspaces of generalized ordered spaces. (See also [H2]). They are interesting and important because we have a fact : The density of X is equal to the cellularity of X.

Definition 1. A (topological) space *X* is said to have *Property I* if and only if there exists a σ -closed discrete dense subset *D* of *X*, that is, $D = \{D(n) : n \ N\}$ is a dense subset of *X* such that D(n) is a closed discrete subset of *X* for every $n \ N$. *N* denotes the set of natural numbers.

Definition 2. A space X is said to have *Property II* if and only if there is a dense metrizable subspace of X.

Definition 3. A space X is said to have *Property III* if and only if, for each n = N, there are an open subset U(n) of X and a relatively closed discrete subset D(n) of U(n) such that, for a point p and an open subset G of X that contains p, there exists an n = N such that p = U(n) and G = D(n)

Ø. (See [BL], [H1]).

It is interesting to consider the relationships between (X, \mathcal{I}) and (X, \mathcal{S}) , where *X* is a linearly ordered set. In this paper, we show that if (X, \mathcal{I}) has Property II, then so does (X, \mathcal{S}) . (See Section 4). This answers the question that was asked by the author in [H3]. Furthermore, we investigate the cases of Properties I and III. (See Sections 3 and 5).

3. Conditions that assure Property I on the associated Sorgenfrey spaces

We showed in [H2] that a LOTS (X, \mathcal{I}) with Property I does not necessarily imply that the associated Sorgenfrey space (X, \mathcal{S}) has the property. For example, the double line $R \times \{0, 1\}$ with the usual lexicographic order-topology has Property I since the space is separable. However, the associated Sorgenfrey space does not have the property. The double line does not have a G_{δ} -diagonal. If it had, the space must be metrizable [L]. It is well known that ($R \times \{0, 1\}, \mathcal{I}$) is not metrizable. Hence one of the reasons that (X, \mathcal{S}) fails to have Property I is that the ordered space (X, \mathcal{I}) does not have a G_{δ} -diagonal. In the following theorem, metrizability that implies Property I is assumed.

Theorem 1. If a LOTS (X, \mathcal{T}) is metrizable, the associated Sorgenfrey space (X, \mathcal{S}) has Property I.

Proof. There exists a σ -discrete base $\mathcal{B} = \{\mathcal{B}(n):n \ N\}$ for (X, \mathcal{I}) since X is a metrizable LOTS. If $B \quad \mathcal{B}(n)$ does not have its maximum, then we choose a point $u(B) \quad B$. If $B \quad \mathcal{B}(n)$ has its maximum, then let u(B) be the point. Note that $u(B) \quad B$. Let $D(n) = \{u(B) : B \quad \mathcal{B}(n)\}$ and $D = \{D(n):n \quad N\}$. It is obvious that D(n) is a closed discrete in (X, \mathcal{S}) . We first show that D is dense in (X, \mathcal{S}) . Let [x, y[be a non-empty open subset of (X, \mathcal{S}) . Case (i): If $]x, y[\neq \emptyset$, then there exist a point $z \quad]x, y[$ and $B \quad \mathcal{B}(n)$ such that $z \quad B \quad]x, y[$. Hence $u(B) \quad]x, y[\quad [x, y[$. Case (ii): Suppose that $]x, y[= \emptyset$. If x has its predecessor, then $\{x\}$ is open in (X, \mathcal{I}) . Hence there exists $B \quad \mathcal{B}$ such that $x \quad B \quad \{x\}$. Hence $B = \{x\}$. Therefore, u(B) = x and $[x, y[\quad D \quad \emptyset]$. If x does not have its predecessor, then $] \quad , x]$ is open in (X, \mathcal{I}) . Hence there exists $B \quad \mathcal{B}$ such that $x \quad B \quad [x, x]$ is open in (X, \mathcal{I}) . Hence there exists $B \quad \mathcal{B}$ such that $x \quad B \quad [x, x]$ is open in (X, \mathcal{I}) . Hence there exists $B \quad \mathcal{B}$ such that $x \quad B \quad [x, x]$ is open in (X, \mathcal{I}) . Hence there exists $B \quad \mathcal{B}$ such that $x \quad B \quad [x, x]$ is open in (X, \mathcal{I}) . Hence there exists $B \quad \mathcal{B}$ such that $x \quad B \quad [x, x]$.

Corollary 1. Let (X, \mathcal{S}) be a LOTS having Property I. If it has a G_{δ} -diagonal, then (X, \mathcal{S}) has Property I.

Proof. This follows from Theorem 1 and a fact that a LOTS with a G_{δ} -diagonal is metrizable [L].

The following theorem states another condition for (X, \mathcal{I}) with Property I to assure the same property on (X, \mathcal{S}) .

Definition 4. Let *X* be a linearly ordered set and $\{x, y\}$ a two-point subset of *X*, where x < y. If $[x, y] = \emptyset$, then $\{x, y\}$ is said to be a *jump*.

Theorem 2. Suppose that (X, \mathcal{T}) is a LOTS with countably many jumps. If (X, \mathcal{T}) has Property *I*, then so does (X, \mathcal{S}) .

Proof. We first prove that (X, \mathcal{T}) has a G_{δ} -diagonal. Note that a space on which we need to assume is a GO-space and not a LOTS. So we use *X* instead of (X, \mathcal{T}) . Let $D = \{D(n): n \mid N\}$ be a dense subset of *X*, where D(n) is closed discrete in *X* for every $n \in N$. We may assume that D(n)

D(n+1). Let $\{\{x_n, y_n\}: n \in N\}$ be countable jumps in *X*, that means $x_n < y_n$ and $]x_n, y_n[= \emptyset$. Let $D'(n) = D(n) = \{x_n, y_n\}$. Then D'(n) is closed discrete in *X*. Hence we may assume that all jumps are contained in *D*. Since *X* - D(n) is open in *X*, it is expressed as a disjoint union of open convex subsets, that is,

$$X - D(n) = \{U(\alpha) : \alpha \quad A(n)\}.$$

Since D(n) is closed discrete and that a GO-space is collectionwise normal, we can find an open set V(n; d) for each d D such that V(n; d) $V(n; d') = \emptyset$ for d d' D(n). Since X is first-countable, we can find open sets V(n, m; d)(m N) that are contained in V(n; d) for d D(n) such that $\{V(n, m; d): m N\}$ is a local base at d D(n). Set

$$\mathcal{G}(n, m) = \{U(\alpha): \alpha \quad A(n)\} \quad \{V(n, m; d): d \quad D(n)\},\$$

where for d = d' in D(n), V(n, m; d) = 0 and V(n, m+1; d) = V(n, m; d), V(n+1, m; d)

V(n, m; d) and that $\{V(n, m; d) : m \ N\}$ is a countable base at $d \ D(n)$. We show that $\{\mathcal{G}(n, m) : n \ N, m \ N\}$ is a G_{δ} -diagonal. To show this, x and y are distinct points of X. Case (i): x and y are points of D. There exists $n \ N$ such that $x, y \ D(n)$. There exists $m \ N$ such that V(n, m; x) does not contain y. Hence $St(x, \mathcal{G}(n, m)) = V(n, m)$ does not contain y. Case (ii): Let $x \ D$ and $y \ X - D$. There exists $n \ N$ such that $x \ D(n)$. Suppose that $\{x, y\}$ is a jump, where x < y and $]x, y[= \emptyset$. Hence $x, y \ D$. This is a contradiction. Case (iii): Let $x \ Z - D$ and $y \ D$. There exists $n \ N$ such that $y \ D(n)$. Furthermore, there exists $\alpha \ A(n)$ such that $x \ U(\alpha) \ X - D(n)$. It is easy to see that $U(\alpha)$ does not contain y. If there exists $z \ D(n)$ such that $x \ V(n; z)$, then there exists $m \ N$ such that V(n, m; z) does not contain y. Hence $St(x, \mathcal{G}(n, m))$ does not contain y. Case (iv):

Let $x, y \ X - D$. If $]x, y[D \emptyset$, then we can use the argument in Case (iii). Suppose that $]x, y[D = \emptyset$. If $\{x, y\}$ is a jump, then $x, y \ D$. This is also a contradiction. This completes the proof that $\{\mathcal{G}(n, m): n \ N, m \ N\}$ is a G_{δ} -diagonal. Now let us return to the proof of the theorem. Since (X, \mathcal{I}) is a LOTS, it is metrizable by [L]. We then invoke Theorem 1 to get the result. This completes the proof.

The following is worth to note here to give the converse situation to Theorem 2, although it was essentially proved in [BLP].

Proposition 1. Let X be a GO-space with a G_{δ} -diagonal. If X has no isolated points, then X has Property I.

Proof. Let $\{\mathcal{G}(n) : n \ N\}$ be a G_{δ} -diagonal for X. We assume that each member of $\mathcal{G}(n)$ is an open convex subset of X and that $\mathcal{G}(n+1)$ is a refinement of $\mathcal{G}(n)$. Since X is paracompact by [L, (4.5)], for each n N, there exists a σ -discrete collection $\{\mathcal{F}(n, m) : m \ N\}$ in X, where each member of $\mathcal{F}(n, m)$ is a closed subset of X and $\{\mathcal{F}(n, m) : m \ N\}$ is a cover of X for every n N, and $\mathcal{F}(n, m)$ is a refinement of $\mathcal{G}(n)$. For each $F \quad \mathcal{F}(n, m)$, choose a point $p(F) \quad F$. Set $D(n, m) = \{p(F) : F \quad \mathcal{F}(n, m)\}$, then D(n, m) is a closed discrete subset of X. Let $D = \{D(n, m) : n \ N, m \ N\}$. Then D is a dense subset of X. To show this, let G be an open set of X and q a point of G. We may assume that G is convex. Since X has no isolated points, there exist at least three points u < v < w in G. There exists $n \ N$ such that $St(v, \mathcal{G}(n)) \ u, w[$. Since $\{\mathcal{F}(n, m) : m \ N\}$ is a cover of X, there exist $m \ N$ and $F \quad \mathcal{F}(n, m)$ such that $v \ F$. Since there exists $B \quad \mathcal{G}(n)$ such that $F \ B, v$ is a point of B. Hence $F \ B \ u, w[$ G. Hence $p(F) \ G \ D$. Therefore, D is a dense subset of X. Hence X has Property I.

4. Dense metrizable subspaces

The following theorem gives an affirmative answer to the question that was posed in [H3].

Theorem 3. If a LOTS (X, \mathcal{T}) has Property II, so does (X, \mathcal{S}) .

Proof. Let *D* be a dense metrizable subspace of (X, \mathcal{S}) . Then *D* has a G_{δ} -diagonal { $\mathcal{S}(n)$: *n N*}, where every $\mathcal{S}(n)$ is an open cover of *D* and any two points *x* and *y* in *D*, *x y*, there exists an *n*

N such that St(x, $\mathcal{G}(n)$) does not contain *y*. Furthermore, we assume that every $G = \mathcal{G}(n)$ is convex in *D*. Let $I = \{x : \{x\} \text{ is open in } (X, \mathcal{S}) \text{ and is not open in } (X, \mathcal{I})\}$. Let

$$D' = D \quad (X - \operatorname{Cl}(I, (X, \mathscr{I}))),$$

where Cl(A, X) denotes the closure of *A* in a space *X*. Let E = D' *I*. Then *E* is a dense subset of (X, \mathcal{S}) . To show this, let x = X - E and [x, y] be a neighborhood of x in (X, \mathcal{S}) . We first show that $]x, y[=\emptyset$. Suppose that $]x, y[=\emptyset$. If x has its predecessor, then x = D and x does not belong to

Cl $(I, (X, \mathcal{I}))$. Hence $x \quad D'$. This is a contradiction. If x does not have its predecessor, then $x \quad I$. This is a contradiction. Hence $]x, y[\emptyset$. Since]x, y[is a non-empty open set of $(X, \mathcal{I}),]x, y[$ $D \quad \emptyset$. Let $d \quad]x, y[D. If]x, y[I \quad \emptyset, \text{ then } [x, y[E \quad \emptyset. \text{ Suppose that }]x, y[I = \emptyset. \text{ Then } d$ does not belong to Cl $(I, (X, \mathcal{I}))$. Hence $d \quad D'$. This is a contradiction. This shows that E is a dense subset of (X, \mathcal{S}) . Since $X - \text{Cl}(I, (X, \mathcal{I}))$ is an open subset of $(X, \mathcal{I}), \text{ it is expressed as a}$ union of open convex subsets of $(X, \mathcal{I}), \text{ say}, X - \text{Cl}(I, (X, \mathcal{I})) = \{U_{\alpha} : \alpha \in A\}$, where U_{α} is a convex component in (X, \mathcal{I}) . Let $n \in N$, and set

$$\mathcal{H}(n) = \{ G \quad U_{\alpha} \colon G \quad \mathcal{G}(n) \text{ and } \alpha \quad A \} \quad \{ \{ x \} \colon x \quad I \}.$$

We show that $\mathcal{H}(n)$ is an open cover of $(E, \mathcal{S}|_E)$. It is easy to see that $G \cup U_{\alpha} = E$. To show that each member of $\mathcal{H}(n)$ is open in $(E, \delta|_E)$, we take $G = U_\alpha - \mathcal{H}(n)$, where $G = \mathcal{G}(n)$ and $\alpha = A$. Then G = V D, where V is open in (X, \mathcal{I}) . Since G U_{α} D $(X - Cl(I, (X, \mathcal{I}))) = D' E$, we have $G \quad U_{\alpha} = (V \quad U_{\alpha}) \quad D = (V \quad U_{\alpha}) \quad D' = (V \quad U_{\alpha}) \quad E$, because $(V \quad U_{\alpha}) \quad I = \emptyset$. Hence *G* U_{α} is open in $(E, \mathcal{G}|_E)$. Therefore, *G* U_{α} is open in $(E, \mathcal{S}|_E)$. It is obvious that $\{x\}(x \mid I)$ is open in $(E, \mathcal{S}|_E)$. To show that $\mathcal{H}(n)$ is a cover of E, let d = D'. Then $d = D = (X - Cl(I, (X, \mathcal{I})))$. Hence there exist G $\mathcal{G}(n)$ and α A such that d G and d U_{α} . Hence d G U_{α} . Let d I. Then $d \in \{d\}$ $\mathcal{H}(n)$. Finally, we show that $\{\mathcal{H}(n): n \mid N\}$ is a G_{δ} -diagonal for *E*. To show that, let x and y are distinct points of E. Let x I. Since there are no elements G U_{α} of $\mathcal{H}(n)$ that contain x, it is easy to prove that, for n = N, $St(x, \mathcal{H}(n)) = \{x\}$ does not contain y. Let x = D' and y I. Then there exist G $\mathcal{G}(n)$ for (any) n N and U_{α} for some α A such that G U_{α} contains *x*. Since *G* U_{α} has no elements of *I*, it does not contain *y*. Note that St(*x*, $\mathcal{H}(n)$) = St(x, $\mathcal{G}(n)$) U_{α} . Let x and y be points of D'. Since x and y D, there exists n N such that St $(x, \mathcal{G}(n))$ does not contain y. Since each element of $\mathcal{H}(n)$ is contained in an element of $\mathcal{G}(n)$, St(x, $\mathcal{H}(n)$) does not contain y. This shows that $\{\mathcal{H}(n): n \in N\}$ is a G_{δ} -diagonal for $(E, \mathcal{S}|_E)$. By [BLP, Proposition (3.4)], (X, S) has a dense metrizable subspace. This completes the proof.

5. Property III

We would like to pose the following question that seems to be difficult to answer [H3].

Question. Let (X, \mathcal{I}) be a LOTS having Property III. Does (X, \mathcal{S}) have Property III?

If the assumption on (X, \mathcal{I}) is strengthened to Property I, we obtain a result.

Theorem 4. Suppose that (X, \mathcal{I}) has Property I. Then (X, \mathcal{S}) has Property III.

Proof. Let $D = \{D(n) : n \ N\}$ be a dense subset of (X, \mathcal{I}) such that D(n) is a closed discrete subset of (X, \mathcal{I}) for every $n \ N$. Let U(0) = D(0) be the set of isolated points of (X, \mathcal{S}) . For every n > 0, set U(n) = X. It is clear that, for every $n \ge 0$, U(n) is open in (X, \mathcal{S}) and D(n) is relatively closed discrete in $U(n) \ (X, \mathcal{S})$. Then the collection $\{U(n), D(n) : n \ge 0\}$ builds what is

necessary to assure Property III. To see this, let p be a point of X and G an open subset of (X, \mathcal{S}) containing p. First let p be an isolated point of (X, \mathcal{S}) . Then p = U(0) and $G = D(0) = \emptyset$. Suppose that p is not an isolated point of (X, \mathcal{S}) . Then we may assume that G = [p, q[and $]p, q[= \emptyset$, where p < q. Since]p, q[is open, and D is dense, in (X, \mathcal{I}) , it follows that $]p, q[= D = \emptyset$. Hence there exists an $n \ge 1$ such that $]p, q[= D(n) = \emptyset$ and p = U(n) = X. Hence $G = D(n) = \emptyset$. This completes the proof of Theorem 4.

References

- [BL] H. R. Bennett and D. J. Lutzer, Point countability in generalized ordered spaces, Top. and its Appl., 71 (1996), 149-165.
- [BLP] H. R. Bennett, D. J. Lutzer and S. D. Purisch, On dense subspaces of generalized ordered spaces, Top. and its Appl., 93 (1999), 191-205.
- [H1] M. Hosobuchi, Property III and metrizability in linearly ordered spaces, J. of Tokyo Kasei Gakuin Univ., 37 (1997), 217-223.
- [H2] M. Hosobuchi, Relationships between four properties of topological spaces and perfectness of generalized ordered spaces, Bull. of Tokyo Kasei Gakuin Tsukuba Women's Univ., 2 (1998), 67-76.
- [H3] M. Hosobuchi, Properties concerning dense subsets of Sorgenfrey spaces and Michael spaces, Bull. of Tokyo Kasei Gakuin Tsukuba Women's Univ., 3 (1999), 233-241.
- [L] D. J. Lutzer, A metrization theorem for linearly orderable spaces, Proc. Amer. Math. Soc., 22 (1969), 557-558.

Tokyo Kasei Gakuin University Department of Housing and Planning 2600 Aihara, Machida, Tokyo 194-0292 JAPAN mhsbc@kasei-gakuin.ac.jp