
1.  Definitions of the four properties concerning dense subsets

The following definitions were given in dB L Pf. (See also dH2 f ). For a generalized ordered

space (GO-space) X that has one of the properties in the definitions, we have a fact : the density of

X = the cellularity of X. A GO-space is defined as a subspace of a linearly ordered topological space.

(See Section 2).

Definition 1.  A topological space X is said to have Property I if and only if there exists a σ-

closed discrete dense subset D of X, that is, D = ∪{D(n) : n ∈N } is a dense subset of X such that

D(n) is a closed discrete subset of X for every n∈N. N denotes the set of natural numbers. 

Definition 2.  A space X is said to have Property II if and only if there is a dense metrizable

subspace of X.

Definition 3.  A space X is said to have Property III if and only if, for each n∈N, there are an

open subset U(n) of X and a relatively closed discrete subset D(n) of U(n) such that, for a point p

and an open subset G of X that contains p, there exists an n∈N such that p∈U(n) and G∩D(n)
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≠φ. (See also dBLf, dH1f).

Definition 4.  A space X is said to have Property IV if and only if there exists a σ - r e l a t i v e l y

discrete dense subset D of X, that is, D = ∪{D(n) : n ∈N} is a dense subset of X such that D(n) is

a relatively discrete subspace of X for every n ∈N.  “Relatively discrete” means “discrete as a

subspace”.

2.  Linearly ordered spaces and Sorgenfrey spaces

Let (X, <) be a linearly ordered set.  We can consider two topologies on (X, <).  One of them is

a linearly ordered topological space (LOTS) and the other is a Sorgenfrey space. A LOTS (X, <, I)

has the order topology defined by <, that is, a basic open neighborhood of x in the LOTS is of the

form fy, zd, where y < x < z.  The order topology is often called the interval topology.  That is the

reason why the letter I is used.  A basic open neighborhood of x in a Sorgenfrey space (X, <, S) is

of the form dx, yd, where x < y.  We usually abbreviate (X, <, I ) as (X, I ), and (X, <, S) as (X, S).

We also write (X, <) as X.

It is interesting to consider the relationship between (X, I ) and (X, S), where X is a linearly

ordered set.  In this paper, we investigate whether the following statement is true: if (X, I ) has

Property P, then so does (X, S) and vice versa, where P is one of the four properties I, II, III, and

IV defined in the first section.

The following two lemmas are necessary to prove Proposition 1.

Lemma 1. Let X be a linearly ordered set and (X, S) the Sorgenfrey space. Let D  = {x∈X : {x} is

open in (X, S)}. Then there exists a subset S of  X －D such that S = ∪{Sα : α∈A}, where

(1) Sα is a convex, open subset of (X, S) for every α∈A. (Sα is said to be convex, if x < y < z with x, z

∈Sα, then y∈Sα).

(2) Sα∩Sβ = φ   for α≠β.

(3) S ∪D is a dense subset of (X, S).

Proof.  If D is a dense subset of (X, S), then we set S = φ.  Suppose that D is not dense in

(X, S).  Let x /∈D. Then, the following two cases occur.

Case 1.  Any neighborhood of x contains a point of D.

Case 2.  There exists y∈X such that x < y, dx, yd ≠φ and dx, yd∩D = φ. 

Consider Case 2 first to construct Sα = dxα , yαd, we shall consider the following four cases: 

(i) if f←, xd∩D = φ, then let fxα , xd = f←, xd. (ii) if there exists max(f←, xd∩D), then we set xα

= the successor of max( f←, xd∩D). (i i i) if there exists sup( f←, xd∩D) in X－D, then we set xα = 

sup(f←, xd∩D). (iv) if sup(f←, xd∩D) is a gap, then we set xα = the gap.  Next we explain how

to choose yα : let y /∈D, xα ＜ y and f xα , y d∩D = φ .
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(i) if dy, →d∩D = φ, then let dy, yαd = dy, →d. (ii) if there exists min(dy, →d∩D), then let yα =

m i n( dy, →d∩D). (i i i) if there exists inf( dy, →d∩D) in X－D, then let yα = inf( dy, →d∩D). 

(i v) if inf( dy, →d∩ D) is a gap, then we set yα = the gap.  Now, let Sα = dxα, yαd and S = 

∪{Sα : α∈A}. Then we can easily show (1) and (2) stated in the lemma.  To prove (3), x∈X－

(S ∪D).  Note that x ≠ xα.  If x = yα , there are infinitely many points of dyα , →d∩D. So any

neighborhood of yα meets D.  If x is distinct from xα , yα , then by Case 1 above, any neighborhood of

x contains a point of D.  This shows (3) and completes the proof of Lemma 1.

Lemma 2.  Let D be a countable subset of a Sorgenfrey space (X, S).  Then D is metrizable.

Proof.  Let D = {dn : n∈N} be a countable subset of X.  Let B(n, m) = {ddn, dmd}, where dn < dm.

It is easy to see that B = ∪{B(n, m) : (n, m) ∈N×N} is a base for (D, S |D).  Each family

B(n, m) consists of a single element, so it is discrete. Hence B is a σ -discrete base for the space

(D, S |D).  By the Bing’s Metrization Theorem, (D, S |D) is metrizable. This completes the proof.

The following are results concerning Properties II and IV for a Sorgenfrey space, although

Proposition 1 is a partial result. On the contrary, it is unknown if we have a similar result for

Property III.  See Examples 1 and 2 in the third section for Property I.

Proposition 1. Let (X, S) be a Sorgenfrey space. If every(Sα , S | Sα) is separable, then (X, S)

has Property II, where Sα’s are defined in Lemma1 and S |Sα denotes the topology on Sα induced by S.

Proof.  Since (Sα , S |Sα) is separable, there exists a countable dense subset Tα of (Sα , S |Sα)

for every α∈A.  Hence (Tα , S |Tα) is metrizable for every α∈A by Lemma 2.  It follows from

Lemma 1 that {Tα : α∈A} and D are mutually disjoint.  Set T = ∪{Tα : α∈A}.  Since Tα⊂fxα , yαd

for every α∈A, it is easy to see that T∪D is a topological sum of {Tα : α∈A} and D.  Hence T ∪

D is metrizable.  Since T∪D is dense in (S ∪D, S |S ∪D) and S ∪D is dense in (X, S), T∪D is a

dense subset of (X, S). Therefore, (X, S) has Property II. This completes the proof.

Remark 1.  Let R be the set of real numbers. Then D = {x∈R : {x} is open in (R, S)} is empty.

Hence S = R by Lemma 1. Since the Sorgenfrey line (R, S) is separable, it has a dense metrizable

subspace (Q, S|Q) by Lemma 2, where Q is the set of rational numbers. This justifies the

assumption of separability in Proposition 1.

Theorem 1.  If (X, I ) has Property IV, then so does  (X, S).

Proof.  Let D = ∪{D(n) : n∈N} be a σ -relatively discrete dense subset of  (X, I ). Let 

D(0) = {x∈X－D : fa, xd ≠φ  for any a < x, and there exists y> x such that fx, yd = φ}, 

and D' = D∪D(0).  Then D' is a dense subset of (X, I ).  To prove this, let x be a point of X－D',

and dx, yd a neighborhood of x in (X, S ).  If fx, yd is not empty, then fx, yd∩D ≠φ. Hence dx, yd∩
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D' ≠φ.  If fx, yd is empty, then there exists a < x such that fa, yd = {x}, because if fa, xd ≠φ for any

a < x, then x∈D(0).  Hence x∈D'.  This contradicts the assumption x /∈D'.  Hence {x} is open in

(X, I ) and x∈D.  Since x does not belong to D', this case does not occur.  It is clear that D(n),

n ≧1, is relatively discrete in (X, S). Since for each x∈D( 0 ), {x} is open in (X, S), D( 0 ) i s

relatively discrete in (X, S).  Hence D' is a σ -relatively discrete dense subset of (X, S). Therefore,

(X, S) has Property IV.  This completes the proof.

3.  Miscellaneous counterexamples

Example 1.  Even if (X, I ) has Property I,  (X, S) does not necessarily have Property I:

We consider a lexicographically ordered set X = d0, 1f×{0, 1}.  Since (X, I ) is separable, it has

Property I. But, (X, S) has d0, 1f×{0} as a dense discrete subset.  Hence it is not perfect (see

Definition 5 in Section 4).  Since a GO-space with Property I is perfect, it does not have Property I.

Example 2.  Even if (X, S) has Property I, (X, I ) does not necessarily have Property I:

We consider X = ω1, the set of countable ordinals.  It is clear that (X, S) is discrete, hence it has

Property I.  Since (X, I ) is not paracompact, it does not have Property I.

Example 3.  Even if (X, S) has Property II, (X, I ) does not necessarily have Property II:  

Let X = Iω1×{0, 1} be a lexicographically ordered set, where Iω1 itself is ordered lexicographically.

Then (X, S) has Property II.  It is clear that Iω1×{0} is a dense, discrete subset of (X, S).  Hence

Iω1×{0} is a dense metrizable subspace of (X, S).  To prove that (X, I ) does not have Property II,

it is sufficient to show that (X, I ) is not first countable at any point.  As was proved in dBLPf, for a

GO-space X, if X has a dense metrizable subspace D, then X is first countable at each point of D.

Let s = (s1, s2, …, sα , …; 0)∈ Iω1 ×{0}. If there exists an increasing seqence {sn : n∈N} in (X, I )

that converges to s, then there exist countably many points of Iω1×{0} that converge to s.  As is

well known, Iω1 is not first countable at any point.  This is a contradiction.

Example 4.  There is another example to provide the same situation as Example 3: 

L e t X be a linearly ordered topological space (L O T S) defined in dB Lf, Example 5.5. X h a s

Property III, but it is not first-countable at any point of X. Precisely, 

X = {(α1, …, αn, ω 1, ω 1, ω 1, …)∈d0, ω 1f
ω : αi < ω 1, i = 1, 2, …, n, n≧0},

where if n = 0, then (ω－1) = (ω 1, ω 1, ω 1, …) is a single point.  Let 

X(n) = {x∈X : the length of x is n},

where the length of x = (α1, …, αn, ω 1, ω 1, ω 1,…) is n if αn < ω1.  Then X = ∪{X(n) : n ≧ 0}. Since

each X(n) is relatively discrete in (X, I ) as shown in dBLf.  Hence X(n) is also relatively discrete

in (X, S).  We show that every X(n) is a closed subset of (X, S).  Let x∈X－X(n).  If n = 0, it is

easy to prove that. So let n > 0.  Let x∈X(i), 0 < i < n.  If x = (α1, …, αi, ω1, …ω 1, ω 1, ω－1),  then 

let y = (α1, …, αi + 1, 0, …, 0, ω 1, ω－1).  It is easy to show that dx, yd∩X(n) = φ.  Next, let x ∈ X(i),

i > n.  For x = (α1, …, αi, ω 1, ω 1, ω 1, …), let y = (α1,…, αi + 1, ω 1, ω 1, ω 1,…).  Then dx, yd∩X(n) =
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φ.  Hence X(n) is a closed discrete subset of (X, S).  Therefore (X, S) has Property I.  Hence it

has Property II.  Since (X, I ) is not first-countable at any point, it does not have Property II as

proved in dBLPf.

Remark 2.  X(n) in Example 4 is not necessarily a closed subset in (X, I ).  For example,

consider X(2) and a point x = (ω, ω－1) that does not belong to X(2).  We can show that for any y∈

X, y < x, fy, xf∩X(2) ≠φ.  Let y= (α1, …, αi, ω－1) be less than x.  Case 1: let α1 = ω.  Then, α2 < ω 1.

To see this, suppose that α2 = ω 1.  Then for all i > 1, α1= ω 1.  Hence y = x.  This contradicts y < x.

Let z = (α1, α2 + 1, ω－1).  Then z∈X(2) and y < z < x. Hence fy, xf∩X(2) ≠φ. Case 2:  let α1 < ω.

Then α1 = n∈N.  Let z = (α1 + 1, α2 , ω－1)∈X(2) and y < z < x.  Hence fy, xf∩X(2) ≠φ. Case 3:

the case α1 >ω does not occur because y< x.  This completes the proof.

Example 5.  Even if (X, S) has Property III, (X, I ) does not necessarily have Property III:

Let X = ω1. Then (X, S) is discrete.  Hence it has Propety III.  Because (X, I ) is not paracompact,

it does not have Property III by Proposition 4.2 in dBLf.

Example 6.  Even if (X, S) has Property IV, (X, I ) does not necessarily have Property IV:

Let X = Iω1×{0, 1} be a lexicographically ordered set, where Iω1 itself has the lexicographic order.

It is clear that a subspace S = Iω1×{0}∪{(1, 1, …, 1; 1)} is open, relatively discrete in (X, S).  We

show that S is a dense subset of (X, S).  Let

(y, 1) = (y1, …, yα , … ; 1) and (z, 0) = (z1, …, zα , … ; 0)

be points of Iω1×{0, 1} that (y, 1 ) < (z, 0 ).  Since y < z, there exists α < ω1 such that yα < zα and yβ =

zβ for β < α.  Let (u, 0 ) = (y1, …, uα, … ; 0 ), where yα < uα < zα.  Hence (y, 1 ) < (u, 0 ) < (z, 0).

Therefore, (u, 0)∈d(y, 1), (z, 0)d.  Hence (X, S) has Property II, and hence (X, S) has Property

IV.  Suppose that (X, I ) has Property IV.  Since (X, I ) is a compact LOTS, it has Property II by

Corollary 4.7 in dBLPf.  Then (X, I ) is first-countable on a dense subset D.  But, neither Iω1×{0}

nor Iω1×{1} is first-countable at any point.  Hence (X, I ) does not have Property IV.

4. Four properties and the weak perfectness of Michael spaces

Let P be a subset of the unit interval X = d0, 1f.  We topologize X as follows: for each point p∈

P, {p} is open and for each point x∈X－P, we agree to endow the usual Euclidean neighborhoods.

This space is written M(P) and is said to be a Michael space.  The letter M stands for the topology

of M(P), and E is used for the usual Euclidean topology on d0, 1f through the remaining of the

paper. 

Theorem 2.  Any Michael space M(P) has Properties II, III and IV.

Proof.  About Property II: if P is dense in X = d 0, 1 f, then it is easy to see that M(P) h a s
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Property II.  Suppose that P is not a dense subset of X.  Then, by Lemma 1, we can write X －P =

∪{Sα : α∈A}, where Sα is an open convex subset of d 0, 1 f for every α ∈ A.  Since d 0,1 f i s

hereditarily separable, there exists a countable dense subset D = {dn : n∈N} of X－P.  Let B(0) =

{{p}: p∈P}, and B(n, m) = {fdn －(1/m), dn＋(1/m)d} for each (n, m)∈N×N.  Then we can

easily show that 

B = B(0)∪(∪{B(n, m) : (n, m)∈N×N})

is a σ -discrete base for D∪P . Hence D∪P is a dense metrizable subspace of M(P) by the Bing’s

Metrization Theorem.  Hence M(P) has Property II.  About Property III: it is sufficient to show

that M(P) is quasi-developable by Lemma 3.4 and Proposition 1.6 in dBLf.  In fact, B is a quasi-

development.  To show that, let x be a point of an open set U, where x /∈D∪P. Then there exists

(n, m)∈N×N such that x∈fdn－(1/m), dn＋(1/m)d⊂U.  If x∈D∪P, then it is easy to get a

similar consequense.  Since the quasi developability means the existence of a σ -minimal base,

M(P) has Property III by dB Lf (see also dHf ).  It is shown in dB L Pf that Property II (or III)

implies Property IV.  This completes the proof of Theorem 2.

The notion of weak perfectness was introduced by L. J. Koc̆inac dKf.  Before the discussion ,

we give the definition and a theorem that are needed to prove our result.  Theorems 3 and 5 were

announced in dBHLf, but an explicit proof was not given in the paper, so we give a direct proof for

the sake of convenience.

Definition 5.  A topological space X is called weakly perfect if and only if, for every closed

subset C of X, there exists a dense subset D of C such that D is a Gδ -subset of X.  If we can take

D = C, then X is said to be perfect.

Theorem 3. Suppose that M(P) is weakly perfect.  Then, for any E -closed subset C of d0, 1f such

that  C －P is E -dense in C, P∩C is a first category subset of C. (The converse is also true.)

Proof.  Let C be an E -closed subset of d0, 1f such that C －P is E -dense in C. Let C* = C －P.

Then C* is an M -closed subset of M(P).  Since M(P) is weakly perfect, there exists an M -dense

subset S of C* that is an M -Gδ -subset of M(P), say, S = ∩{G(n) : n∈N}, where G(n) is an E -

open subset of M(P) for every n∈N.  Let 

H(n) = {x∈C : there exist s, t∈R such that s < x < t and fs, td∩d0, 1f⊂G(n)}.  

Then, it is easy to see that H(n)⊂G(n) and that H(n) is a relatively E -open subset of C.  We

show that H(n) is E -dense in C. Let fa, bd∩C be a non-empty E -open subset of C. Since C－P is

E -dense in C, we have fa, bd∩(C－P) ≠φ.  Since S is M -dense in C* = C － P, fa, bd∩(C－P)

∩S ≠φ.  Take a point y∈fa, bd∩(C－P)∩S . Hence y∈S⊂G(n) for every n∈N.  Note that

G(n) is M -open in M(P).  Since y /∈P, there exist y1, y2∈R such that y1 < y < y2 and fy1, y2d∩d0, 1f

⊂G(n). Since y∈C , y∈H(n).  Hence fa, bd∩C ∩H(n)≠φ. That shows that H(n) is E -dense

in C.  Since ∩{H(n) : n∈N}⊂∩{G(n) : n∈N} = S⊂C－P, it follows that 

P∩C ⊂C－d∩{H(n) : n∈N}f = ∪{(C－H(n) : n∈N }. 
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It is clear that C－H(n) is relatively E -closed in C and nowhere dense in C. Therefore, P∩C is a

first category subset of C.  The proof of the converse statement will be given in Theorem 5, below.

In the following theorem, let P denote the set of irrational numbers in d0, 1f. Hence M(P) is

the usual Michael line.

Theorem 4.  Let P be the the set of irrational numbers in d0, 1f.  Then M(P) is not weakly perfect.

Proof.  Suppose that M(P) is weakly perfect. Take a closed set C = d0, 1f.  Then C－P is dense

in C, because P is the irrational numbers in d0, 1f.  Hence, by Theorem 3, P∩C is a first category

subset of C.  This means P is a first category subset of d0, 1f. This contradicts a well known fact.

The following is the converse to Theorem 3.     

Theorem 5. Suppose that for any E -closed subset of d0, 1f such that C－P⊂C is E -dense in C,

P∩C is a first category subset of C.  Then M(P) is weakly perfect.

Proof. Let C be a M -closed subset of M(P).  Let K1 = Cl(C－P, d0, 1f), the E -closure of C－P

in d0, 1f.  Then K1－(C－P)⊂P.  To show this, let x be a point of K1－(C－P). Suppose that x /∈P.

Since x∈K1, V(x)∩(C－P)≠φ for any E -neighborhood V(x).  Hence V(x)∩C≠φ.  Since C is M

-closed in M(P) and x /∈P, x∈Cl(C, M(P)) = C.  Hence x∈C－P.  This contradicts that x∈K1－

(C－P).  Hence we can write K1 = (C－P)∪P' , where P' is a subset of P.  To see that K1－P ⊂

K1 is E -dense, let x∈K1 and V(x) a neighborhood of x in d0, 1f.  Then V(x)∩(C－P)≠φ .  Since

C－P ⊂K1－P, V(x)∩(K1－P)≠φ .  Hence K1－P is E -dense in K1.  By the assumption, P∩K1 is

a first category subset of K1.  Hence P∩K1 is contained in ∪{(F(n) : n∈N }, where F(n) is E -

closed in K1 and nowhere dense in K1.  Since K1－F(n) is relatively E -open in K1 and E -dense in

K1, by the Baire Category Theorem, ∪{K1－F(n) : n∈N} is E -dense in K1, because K1 is compact

in d0, 1f.  Note that (P∩K1)∩(K1－∪{F(n) : n∈N}) = φ.  Therefore,  

(P∩K1)∩(∩{K1－F(n) : n∈N}) = φ.  

That means ∩{K1－F(n) : n∈N} does not contain any point of P.  Let 

D = (P∩C)∪d∩{K1－F(n) : n∈N}f.  

Then D⊂C.  To see this, let x∈∩{K1－F(n) : n∈N}⊂K1.  Since x /∈P,  any M -neighborhood of

x is a Euclidean.  Hence for any neighborhood V(x) of x,  we have V(x)∩(C－P)= φ, and hence

V(x)∩C ≠φ.  Therefore, x∈Cl(C, M(P))= C, where Cl(C, M(P)) denotes the M - closure of C in

M(P).  We now show that D = (P∩C)∪d∩(K1－∪{F(n) : n∈N}f is M - dense in C.  To see

this, let x∈C－D.  Note that x /∈P.  Let V(x) be an E -neighborhood of x.  Since x∈K1 and ∩{K1－

F(n): n∈N} is E -dense in K1, V(x)∩(∩{K1－F(n) : n∈N})= φ.  Hence V(x)∩D = φ. This shows

that D is M -dense in C.  We show next that D is an M -Gδ -subset of M(P).  Since K1 is E -closed in

d0, 1f, we may write K1 = ∩{W(m) : m∈N }, where W(m) is E -open in d0, 1f for every m∈N.

Since K1－F(n) is E -open in K1, we may write K1－F(n)= U(n)∩K1, where U(n) is E -open in d0,
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1f for every n∈N.  Hence 

K1－F(n) = U(n)∩d∩{W(m) : m∈N }f = ∩{U(n)∩W(m) : m∈N }. 

Hence 

D = (P∩C)∪d∩{K1－F(n) : n∈N}f = (P∩C)∪d∩∩{U(n)∩W(m) : n∈N, m∈N }f. 

Since U(n)∩W(m) is E -open in d0,1f, it is also M -open in M(P).  Since P∩C is clearly M -open

in M(P), so is (P∩C)∪(U(n)∩W(m)). Hence 

D = ∩∩{(P∩C)∪(U(n)∩W(m))) : n∈N, m∈N } 

is an M -Gδ -subset of M(P).  This completes the proof.

Remark 3.  We do not need to assume that C is dense-in-itself in Theorems 3 and 5, although it

was assumed in dBHLf.  Since C－P is E -dense in C, no points of P∩C are E -isolated.  So the

reflections to E -isolated points are not needed when we consider P∩C .

5. Questions

The author does not know the answer to the following question:

Question.  Let P be one of Properties II and III, and suppose that (X, I ) has P.  Does (X, S) have

P ?
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